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values of the interpolated function for any valuercdire obtained by calls (as many

as desired) to a separate routi#el int (for “spline interpolation”):

SUBROUTINE splint(xa,ya,y2a,n,x,y)

INTEGER n

REAL x,y,xa(n),y2a(n),ya(n)
Given the arrays xa(1:n) and ya(1:n) of length n, which tabulate a function (with the
xa;'s in order), and given the array y2a(1:n), which is the output from spline above,
and given a value of x, this routine returns a cubic-spline interpolated value y.

INTEGER k,khi,klo

REAL a,b,h
klo=1 We will find the right place in the table by means of bisection.
khi=n This is optimal if sequential calls to this routine are at random
if (khi-klo.gt.1) then values of x. If sequential calls are in order, and closely
k=(khi+klo)/2 spaced, one would do better to store previous values of
if (xa(k).gt.x)then klo and khi and test if they remain appropriate on the
khi=k next call.
else
klo=k
endif
goto 1
endif klo and khi now bracket the input value of x.

h=xa(khi)-xa(klo)

if (h.eq.0.) pause ’bad xa input in splint’ The xa's must be distinct.

a=(xa(khi)-x)/h Cubic spline polynomial is now evaluated.

b=(x-xa(klo))/h

y=axya(klo)+b*ya(khi)+
((a**3-a)*y2a(klo)+(b**3-b)*xy2a(khi))* (h**2) /6.

return

END

CITED REFERENCES AND FURTHER READING:
De Boor, C. 1978, A Practical Guide to Splines (New York: Springer-Verlag).

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), §§4.4-4.5.

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§2.4,

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §3.8.

3.4 How to Search an Ordered Table

Suppose that you have decided to use some patrticular interpolation schem

such as fourth-order polynomial interpolation, to compute a funcfign from a

set of tabulated:;’s and f;'s. Then you will need a fast way of finding your place
in the table ofz;’s, given some particular value at which the function evaluation
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is desired. This problem is not properly one of numerical analysis, but it occurs so

often in practice that it would be negligent of us to ignore it.
Formally, the problemis this: Given an array of abscissag), j=1, 2,. .. n,

with the elements either monotonically increasing or monotonically decreasing, and

given a numbeg, find an integep such thak lies betweerx (j) andxx (j+1). For
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this task, let us define fictitious array elemextg0) andxx (n+1) equal to plus or
minus infinity (in whichever order is consistent with the monotonicity of the table).
Thenj will always be between 0 ana, inclusive; a returned value of 0 indicates
“off-scale” at one end of the table,indicates off-scale at the other end.

In most cases, when all is said and done, it is hard to do bettetkeotion,
which will find the right place in the table in abolsig ,n tries. We already did use
bisection in the spline evaluation routiselint of the preceding section, so you
might glance back at that. Standing by itself, a bisection routine looks like this:

SUBROUTINE locate(xx,n,x,j)

INTEGER j,n

REAL x,xx(n)
Given an array xx(1:n), and given a value X, returns a value j such that x is between
xx(j) and xx(j+1). xx(1:n) must be monotonic, either increasing or decreasing. j=0
or j=n is returned to indicate that x is out of range.

INTEGER j1,jm,ju

j1=0 Initialize lower
ju=n+1 and upper limits.
if (ju-jl.gt.1)then If we are not yet done,
jm=(ju+jl)/2 compute a midpoint,
if ((xx(n).ge.xx(1)) .eqv. (x.ge.xx(jm)))then
jl=jm and replace either the lower limit
else
ju=jm or the upper limit, as appropriate.
endif
goto 10 Repeat until
endif the test condition 10 is satisfied.
if (x.eq.xx(1))then Then set the output
j=1
else if(x.eq.xx(n))then
j=n-1
else
j=i1
endif
return and return.
END

Note the use of the logical equality relatiorqv., which is true when its
two logical operands are either both true or both false. This relation allows the
routine to work for both monotonically increasing and monotonically decreasing
orders ofxx(1:n).

Search with Correlated Values

Sometimes you will be in the situation of searching a large table many times,
and with nearly identical abscissas on consecutive searches. For example, yo
may be generating a function that is used on the right-hand side of a differentia
equation: Most differential-equation integrators, as we shall see in Chapter 16, cal
for right-hand side evaluations at points that hop back and forth a bit, but whose
trend moves slowly in the direction of the integration.

In such cases it is wasteful to do a full bisectiab,initio, on each call. The
following routine instead starts with a guessed position in the table. It first “hunts,”
either up or down, in increments of 1, then 2, then 4, etc., until the desired value is
bracketed. Second, it then bisects in the bracketed interval. At worst, this routine is
about a factor of 2 slower tharocate above (if the hunt phase expands to include
the whole table). At best, it can be a factoi@f,n faster thanocate, if the desired
pointis usually quite close to the input guess. Figure 3.4.1 compares the two routines.
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8
! hunt phase

Adm/\m
1 7 10 14 22 /38

(b) bisection phase

Figure 3.4.1. (a) The routine locate finds a table entry by bisection. Shown here is the sequence
of steps that converge to element 51 in a table of length 64. (b) The routine hunt searches from a
previous known position in the table by increasing steps, then converges by bisection. Shown here is a
particularly unfavorable example, converging to element 32 from element 7. A favorable example would
be convergence to an element near 7, such as 9, which would require just three “hops”

SUBROUTINE hunt(xx,n,x,jlo)

INTEGER jlo,n

REAL x,xx(n)
Given an array xx(1:n), and given a value X, returns a value jlo such that x is between
xx(jlo) and xx(jlo+1). xx(1:n) must be monotonic, either increasing or decreasing.
jlo=0 or jlo=n is returned to indicate that x is out of range. jlo on input is taken as
the initial guess for jlo on output.

INTEGER inc,jhi,jm

LOGICAL ascnd

ascnd=xx(n) .ge.xx(1) True if ascending order of table, false otherwise.
if(jlo.le.0.or.jlo.gt.n)then Input guess not useful. Go immediately to bisection.
jlo=0
jhi=n+1
goto 3
endif
inc=1 Set the hunting increment.
if(x.ge.xx(jlo) .eqv.ascnd)then Hunt up:
jhi=jlo+inc
if (jhi.gt.n)then Done hunting, since off end of table.
jhi=n+1
else if(x.ge.xx(jhi).eqv.ascnd)then Not done hunting,
jlo=jhi
inc=inc+inc so double the increment
goto 1 and try again.
endif Done hunting, value bracketed.
else Hunt down:
jhi=jlo
jlo=jhi-inc
if(jlo.1t.1)then Done hunting, since off end of table.
j10=0
else if(x.1t.xx(jlo).eqv.ascnd)then Not done hunting,
jhi=jlo
inc=inc+inc so double the increment
goto 2 and try again.
endif Done hunting, value bracketed.
endif Hunt is done, so begin the final bisection phase:

if (jhi-jlo.eq.1)then
if(x.eq.xx(n))jlo=n-1
if(x.eq.xx(1))jlo=1
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return

endif

jm=(jhi+jlo)/2

if(x.ge.xx(jm) .eqv.ascnd) then
jlo=jm

else
jhi=jm

endif

goto 3

END

After the Hunt

The problem: Routines locate and hunt return an index j such that your
desired value lies between table entriesxx (j) and xx (j+1), wherexx(1:n) isthe
full length of the table. But, to obtain an m-point interpolated value using a routine
like polint (§3.1) or ratint (§3.2), you need to supply much shorter xx and yy
arrays, of lengthm. How do you make the connection?

The solution: Calculate

k = min(max(j-(m-1)/2,1) ,n+1-m)

This expression produces the index of the leftmost member of an m-point set of
points centered (insofar as possible) between j and j+1, but bounded by 1 at the
left and n at the right. FORTRAN then lets you call the interpolation routine with
array addresses offset by k, eqg.,

call polint(xx(k),yy(k),m,...)

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading,
MA: Addison-Wesley), §6.2.1.

3.5 Coefficients of the Interpolating Polynomial

Occasionally you may wish to know not theval ue of theinterpol ating polynomial
that passes through a (small!) number of points, but the coefficients of that poly-
nomial. A valid use of the coefficients might be, for example, to compute
simultaneousinterpolated values of the function and of several of its derivatives (see
§5.3), or to convolve a segment of the tabulated function with some other function,
where the moments of that other function (i.e., its convolution with powers of x)
are known analytically.

However, please be certain that the coefficientsare what you need. Generally the
coefficients of the interpolating polynomial can be determined much less accurately
than its value at a desired abscissa. Thereforeit is not a good idea to determine the
coefficients only for use in calculating interpolating values. Values thus calculated
will not pass exactly through thetabulated points, for example, whilevalues computed
by the routines in §3.1-53.3 will pass exactly through such points.
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