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Abstract

Computational models of particle dynamics often exchange solution data with discretized

continuum-fields using interpolation functions. These particle methods require a series expansion

of the interpolation function for two purposes: numerical analysis used to establish the models

consistency and accuracy, and logical-coordinate evaluation used to locate particles within a grid.

This report presents discrete-expansions for multi-linear interpolation functions as defined in

triangular and quadrilateral cells. Application of the linear and bilinear discrete-expansions for

numerical analysis and localization in particle methods is outlined and discussed.
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Integrating Interpolation Functions
Across Triangular and Quadrilateral Cell Boundaries

Introduction

Particle methods, computational models of particle dynamics, are often solved

concurrently with discretized continuum-field equations. Interactive particle methods, including

models of liquid sprays [1-4], bubble dynamics [5-9], and material-interface tracking [10,11],

strongly couple the governing equations through the bilateral exchange of mass, momentum, and

energy. In contrast, reactive particle methods, including models of atmospheric transport [12-19],

porous-media diffusion [20-29], and transient mixing [30-32], weakly couple the governing

equations; reactive particles simply respond to the entraining continuum field. Another reactive

method, used extensively for solution visualization [33-35], free-surface tracking [36-41], and

front tracking [42-48], is the tracer-particle method which advects a massless particle with an

interpolated velocity [49-57]. Both interactive and reactive particle methods exchange solution

data with discrete fields using interpolation functions. The focus of this research was on the role

of two common interpolation functions used within existing particle methods.

Particle methods often use interpolation functions directly to evaluate terms in their

governing equations. A Taylor’s series of the interpolation function, expanded from the particle’s

cell, is required to perform analytical studies of these numerical methods. The numerical analyses

include establishing the models mathematical consistency and numerical accuracy. The particle’s

equations, including kinematic equations-of-motion, are often numerically integrated using multi-

step methods such as Runge-Kutta methods. The interpolated quantities that appear within the

particle’s discretized equations may be evaluated in a neighboring cell, and the required

interpolation expansion would then extend through multiple cells in the grid. Derivatives of

interpolation functions, however, are generally not continuous across cell boundaries and,

therefore, a Taylor’s series is not valid in this situation. An alternative expansion for interpolation

functions is required to complete numerical analyses for these particle methods.

Particle methods also often use interpolation functions indirectly to evaluate particle-grid

connectivity data: the identity of the grid cell in which the particle resides and the particle’s

logical-coordinate position vector relative to that cell. Particle localization establishes this data

using cell-searching and logical-coordinate evaluation methods [58-63]. Cell-searching methods

typically use the particle’s logical coordinates to both direct and halt the search. Logical-

coordinate evaluation involves transforming a physical-space position vector into a local

coordinate system, and, as described below, existing methods are based on interpolation

expansions. Particle methods, therefore, require the expansion of interpolation functions for
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numerical analysis and localization, and the mathematical expression required for both purposes

is identical; the methods developed herein are, therefore, valid for both purposes.

While multi-cell Taylor’s series of interpolation functions are not valid for numerical

analyses, modified versions of these expansions are used for particle localization. For spatial-

transformation, the arguments of the interpolation function include logical-coordinate and cell-

vertex coordinate vectors. Existing logical-coordinate evaluation methods, generalized in

Reference [58] for various cell geometries, were developed from a truncated, single-variable

Taylor’s series expansion of the interpolation function [53,58,60,62,63]. The modified Taylor’s

series avoids the problem of discontinuous interpolation derivatives across cell boundaries by

ignoring the function’s dependence on the cell-vertex coordinates. Furthermore, the non-linear

spatial-transformation problem is linearized by only considering the function’s first-order

dependence on the logical coordinates. The iterative solution of the resulting system of equations

is, however, neither algorithmically robust nor computationally efficient. An alternative

expansion for interpolation functions is required for robust and efficient particle localization.

An alternative type of expansion, a discrete-expansion, was recently proposed and

validated for interpolation functions [64-68]. Discrete-expansions are similar to multi-variable

Taylor’s series, but the new expansions are valid throughout a discretized domain. Discrete-

expansions are valid for numerical analyses since they acknowledge the full functional

dependence of interpolation and account for discontinuous derivatives across cell boundaries.

Furthermore, the solution of discrete-expansions for logical-coordinate evaluation is both

algorithmically robust and computationally efficient. Using a simple finite-difference technique, a

single discrete-expansion was developed for trilinear interpolation defined within three-

dimensional hexahedral cells [64-66]. More recently, multiple discrete-expansions were

developed for linear and bilinear interpolation functions defined within triangular [67] and

quadrilateral cells [68]. These two-dimensional discrete-expansions were developed using a

generalized and mathematically rigorous total-differential technique. While the total-differential

development method is dimensionally independent, the technique produced different forms and,

thus, features of the discrete-expansions for linear and non-linear interpolation functions.

The purpose of this report is to first review, then compare and contrast discrete-expansions

for linear and bilinear interpolation. This report continues by briefly describing the total-

differential method of developing discrete-expansions for these functions. Application of the new

interpolation expansions for numerical analysis or localization within particle methods is beyond

the scope of this report. The utility of the multi-linear interpolation discrete-expansions for these

purposes, however, is outlined and discussed, and a summary concludes this report.
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Multi-Linear Interpolation

Two-dimensional computational space is frequently discretized into either triangular or

quadrilateral cell geometries. Multi-linear functions are often applied within these cells for both

data interpolation and spatial-transformation. Interpolation produces a continuous mapping of

discrete field data, often located at cell-vertices, to any position within the cell. The coupling of

multiple cell-based interpolation functions across the entire computational domain produces a

continuous data field; neighboring multi-linear interpolation functions are continuous along the

common boundaries of adjoining cells. Two-dimensional spatial transformation involves mapping

from a physical-space, , to a logical-space, , coordinate system.

Linear Interpolation
A linear function is generally applied within isoparametric triangular cells; see Figure 1.

The linear function is dependent upon both  and the cell-vertex (cv) coordinate vector for

triangles, , as presented in Equation 1.

(1)

Equation 1 is linear with respect to both the logical coordinates, , and the cell-vertex

coordinates, . While the physical coordinates of the cell-vertices are arbitrary, the triangle’s

transformed coordinates are bound by the restrictions , , and .

Bilinear Interpolation
A bilinear function is generally applied in isoparametric quadrilateral cells; see Figure 2.

The bilinear function is dependent upon both  and the cell-vertex (cv) coordinate vector for

quadrilaterals, , as presented in Equation 2.

(2)

 Equation 2 is linear with respect to the cell-vertex coordinates, , but non-linear with

respect to the logical coordinates, . While the physical coordinates of the cell-vertices are

arbitrary, the quadrilateral’s transformed coordinates are bound by  and . 
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Total Differential

Using an interpolation function, , the objective is to establish a relationship

between the finite change of the physical coordinates, , the logical coordinates, , and the

cell-vertex coordinates, . The function’s total-differential provides a relationship between

infinitesimal changes of these coordinates, , as presented in Equation 3.

(3)

The interpolation function’s total-differential includes two derivatives or transformation

matrices that are scaled by differential coordinate vectors. The first derivative represents a

coordinate-transformation or Jacobian matrix: . The size of the square Jacobian matrix is

equal to the number of spatial dimensions. The second derivative represents a geometry-

transformation matrix: . The number of rows and columns in this non-square matrix are

equal to the dimension size and the number of elements in the cell-vertex coordinate vector, .

The size of  is the problem dimension size multiplied by the number of cell vertices.

The coordinate-transformation matrix for bilinear interpolation is a linear function of both

 and . In contrast, the Jacobian matrix for linear interpolation, while linear with respect to

, is not a function of . The general, multi-variable description of the Jacobian matrix will be

retained for the following development: . The geometry-transformation matrix

for bilinear interpolation, while not a function of , is non-linear with respect to . In contrast,

for linear interpolation, this transformation matrix is linear with respect to : . The

interpolation function’s simplified total-differential is presented in Equation 4.

(4)

Integration Method
The objective is to integrate the interpolation function’s simplified total-differential to

obtain a discrete-expansion for interpolation: . The limits of integration are

two particles located in separate, non-contiguous cells: State 1, , and State 2,

. See Figure 3. Integration of the interpolation function’s total-differential

between these two particle end-states is represented in Equation 5.

(5)
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The linearity of the interpolation function’s derivatives affects the complexity of the

solution of Equation 5. More importantly, both  and  must be continuous for the

total-differential to be valid within a specified region. Within a single cell, solution of Equation 5

is straightforward; the interpolation derivatives are guaranteed to be continuous in this region. In

contrast, if the limits of integration cross a cell boundary, where interpolation functions are

continuous but their derivatives are generally discontinuous, the total-differential is not valid.

Discrete-expansions can be obtained from Equation 5 if the integration pathline is partitioned into

cell-based line-segments, but this technique is prohibitively complex and expensive. 

Parameterization
Alternatively, the coordinate-space between the limits of integration can be parameterized.

Parameterization removes the concept of multiple coordinate systems and, thus, discontinuous

interpolation derivatives, by creating a single coordinate-space between any two particles. The

integration pathline end-states can then be defined within any two computational sub-domains,

including any two non-contiguous grid cells. While the form of the parameterization function is

arbitrary, it must be differentiable; it is embedded in the parameterized interpolation function

whose derivatives appear in a modified total-differential. The parameterized interpolation

derivatives are then guaranteed to be continuous along the integration pathline. The parameterized

total-differential may then be integrated without requiring a partitioned pathline.

To create a single coordinate-space between two particles, each of the physical, logical,

and cell-vertex coordinates must be parameterized; particle states are a collection of these vectors.

A simple, linear technique using the variable ‘s’, where , was selected in this research.

The parameterized coordinates, ,  and , then vary linearly along any integration

pathline. Integration limits for the parameterized total-differential are the bounding limits of ‘s’.

Integration of the parameterized interpolation total-differential is represented in Equation 6.

(6)

Solution of Equation 6 requires an integration pathline defined between two particles end-

states. An integration pathline for the parameterized total-differential traverses through the

 plane since these vectors are the arguments of the interpolation function as defined for

spatial transformation: . While the parameterization function does not prescribe

the shape of the integration pathline, it does define the parameterization variable’s behavior along

any path between two particle positions. Three unique integration pathlines were selected by this

research to solve Equation 6: direct, upper-step, and lower-step integration pathlines.
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Discrete-Expansions

The purpose of this section is to review the discrete-expansions for linear and bilinear

interpolation developed using the total-differential method. Details of the development process,

including integration the parameterized total-differential, are provided in References [67,68]. The

bilinear discrete-expansions will be presented first; the linear interpolation solutions are often

subsets of the non-linear solutions. At the end of this section, the general form of these discrete-

expansions will be discussed. The final section of this report will discuss the application of

discrete-expansions for numerical analysis and localization within particle methods.

Bilinear Interpolation
Direct Pathline The first integration pathline used to solve Equation 6 is a direct line

between States 1 and 2; see Figure 4. The two discrete-expansions for bilinear interpolation most

easily obtained using the direct integration pathline are presented in Equation 7.

(7)

Upper-Step Pathline The second integration pathline used to solve Equation 6 is

comprised of two line-segments between States 1 and 2. The first pathline segment is a line of

constant  from State 1 to State A; see Figure 4. The second pathline segment is a line of constant

 from State A to State 2. These two pathline segments form an upper-step within the 

plane. The three discrete-expansions for bilinear interpolation most easily obtained using the

upper-step integration pathline are presented in Equation 8.

(8)
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Lower-Step Pathline The third integration pathline used to solve Equation 6 is comprised

of two line-segments between States 1 and 2. The first pathline segment is a line of constant 

from State 1 to State B; see Figure 4. The second pathline segment is a line of constant  from

State B to State 2. These two pathline segments form a lower-step within the  plane. The

three discrete-expansions for bilinear interpolation most easily obtained using the lower-step

integration pathline are presented in Equation 9.

(9)

Linear Interpolation
Direct Pathline The three discrete-expansions for linear interpolation most easily obtained

using the direct integration pathline are presented in Equation 10.

(10)

Upper-Step Pathline The single discrete-expansion for linear interpolation most easily

obtained using the upper-step integration pathline is presented in Equation 11.

(11)

Lower-Step Pathline The single discrete-expansion for linear interpolation most easily

obtained using the lower-step integration pathline is presented in Equation 12.

(12)
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The discrete-expansions in Equations 7-12, eight for bilinear interpolation and five for the

linear function, are similar to a Taylor’s series; they are combinations of scaled derivatives. For

these two multi-linear functions of finite order, the expansions have a limited number of terms;

for bilinear interpolation, only first and mixed second-order derivatives are non-zero. Arguments

of the interpolation derivatives include particle end-state logical and cell-vertex coordinates, or

their averages:  and . Other arguments include the finite-

difference in the cell-vertex coordinates: . While the transformation matrices are scaled by

the finite-difference vectors  and , the second-order derivative, the vector , is

multiplied by the two scalar finite-differences  and .

The discrete-expansions obtained using the upper-step pathline, Equations 8 and 11, are

similar to those obtained using the lower-step pathline, Equations 9 and 12. Evaluation of the

interpolation derivatives in these expansions is easily visualized using Figure 4. Within Equations

8 and 11, the derivatives with respect to , both  and , are evaluated at ;

the logical-coordinates vary along the pathline segment where  is fixed at State 2. Similarly,

within Equations 8 and 11 the geometry-transformation matrix, , is evaluated at ; the

cell-vertex coordinates vary along the pathline segment where  is fixed at State 1. The lower-

step discrete-expansions, Equations 9 and 12, are nearly identical to the upper-step expansions.

While the form of these expansions are identical, the interpolation derivatives are evaluated at

opposite particle end-states; these integration pathlines are exact mirror images of each other.

Since linear interpolation is more simple than a bilinear function, the discrete-expansions

in Equations 10-12 represent a simplification of the multi-linear expansions in Equations 7-9. The

first discrete-expansion in Equation 10 is the linear version of the direct-pathline bilinear

expansions in Equation 7. The discrete-expansion in Equation 11 is the linear version of the

upper-step bilinear expansions in Equation 8. Similarly, the discrete-expansion in Equation 12 is

the linear version of the lower-step bilinear expansions in Equation 9.

However, unique discrete-expansion formulations are possible for linear interpolation; the

transformation matrices are easily manipulated since they are linear functions of  and . The

second and third linear discrete-expansions in Equation 10 include transformation matrices that

are evaluated at the identical particle end-state. A second Jacobian matrix, evaluated with ,

also appears in these expansions. The form of these two expansions is not repeated in the bilinear

solutions. These two linear expansions, obtained using the direct integration pathline, are also

related to the expansions developed using the upper and lower-step pathlines. The second

expansion in Equation 10 is equivalent to the upper-step expansion in Equation 11. Similarly, the

third expansion in Equation 10 is equivalent to the lower-step expansion in Equation 12.
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The total-differential and finite-difference methods of developing discrete-expansions

produce identical results for similar computational cells and interpolation functions. The second

expansion in Equation 8 is the two-dimensional version of the trilinear expansion obtained using

the finite-difference method [64-66]. Bilinear interpolation defined in quadrilateral cells is a

subset of the trilinear function defined in three-dimensional hexahedral cells. Furthermore, the

hierarchy of multi-linear interpolation functions dictates that the expansion in Equation 11 is the

linear version of the bilinear expansions in Equation 8 and, thus, the single trilinear expansion.

Each of the two-dimensional discrete-expansions were obtained using the upper-step pathline.

Discussion

Particle methods require expansions of interpolation functions for numerical analysis and

logical-coordinate evaluation. Application of the discrete-expansions developed herein for these

purposes is beyond the scope of this report. Verification of the new expansions, however, is

provided in Reference [67] for linear interpolation and in Reference [68] for bilinear

interpolation. Within the following sections, application of linear and bilinear discrete-expansions

for numerical analysis and localization within particle methods is outlined and discussed.

Numerical Analysis
The goal of numerical analysis, an analytical investigation of a computational model,

includes establishing the model’s mathematical consistency and numerical accuracy. While

estimates of these measures are possible, analytical proof of a computational model’s consistency

and accuracy is preferred. A particle method’s consistency and accuracy are based upon its

leading-order error term, which is evaluated by substituting series expansions for all discrete-

terms within the model. A Taylor’s series, however, is not a valid expansion for coupled multi-

linear interpolation functions. Instead, a discrete-expansion is required to complete numerical

analyses of computational models that use interpolation.

For example, numerical analyses of reactive particle methods require a discrete-expansion

of a velocity-interpolation function; these methods compute particle trajectories by interpolating

from a discrete velocity field. Furthermore, all numerical analyses require that the discrete-

expansion must be written relative to a single state, defined here as State 1. Using multi-step

integration methods, however, a reactive particle’s velocity might be evaluated in a separate, non-

contiguous grid cell, defined here as State 2. The objective is then to write discrete-expansion of

the velocity-interpolation function from State 1 to State 2: .

Any one of the above discrete-expansions may be used for numerical analysis; each

expansion is valid throughout a discretized domain. One obvious choice would be the common

V2 V1 f ξ1 V1
cv

,( )+=
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expansion obtained using both the finite-difference and total-differential development methods.

For linear interpolation, the common discrete-expansion, originally presented in Equation 11, is

repeated in Equation 13 for an interpolated velocity function.

(13)

For bilinear interpolation, the common discrete-expansion, originally presented as the

second expression in Equation 8, is repeated in Equation 14 for an interpolated velocity function.

(14)

For numerical analysis, discrete-expansions must be defined at a single state but each

expansion above includes interpolation derivatives defined with State 2 variables; 

in Equation 13, and both  and  in Equation 14. The appropriate

recursive application of the linear and bilinear expansions in Equations 13 and 14 can transform

the mixed-state interpolated velocity into a State 1 function: .

This single-state interpolated velocity function can be substituted back into Equations 13 and 14,

and the computational model’s numerical analysis may then be completed.

For computational models that use interpolation, discrete-expansions represent a key

advancement in the ability to both analyze existing models and develop advanced models. For

existing computational models, discrete-expansions provide the capacity to analytically evaluate

their mathematical consistency and numerical accuracy. By providing an analytical description of

a model’s leading-order error term, discrete-expansions also provide the capacity to develop

advanced computational models. The leading-order error term of an existing model may be used

to create a new, advanced computational model that provides greater numerical accuracy.

Logical-Coordinate Evaluation
Logical-coordinate evaluation is the transformation of a physical-space position vector

into a cell-based, logical-coordinate system. Interpolation functions are often used for spatial

transformation because they can provide a relationship between physical and logical coordinates.

Discrete-expansions represent the mathematical expression that allows interpolation functions to

evaluate a particle’s logical-coordinates. For linear interpolation, the discrete-expansion originally

presented in Equation 11 may be rewritten for this purpose as presented in Equation 15.
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(15)

For bilinear interpolation, the discrete-expansion originally presented in Equation 8 may

be rewritten for logical-coordinate evaluation as presented in Equation 16.

(16)

Both of these discrete-expansions are valid between two particles, States 1 and 2, located

in separate, non-contiguous grid cells. For logical-coordinate evaluation, the coordinate vectors

defined at State 1 are known: ,  and . In contrast, the only coordinates known at State 2

are the physical-coordinates of the particle, . The cell-searching portion of the localization

algorithm does, however, identify a guessed cell for the particle at State 2, which provides cell-

vertex coordinates, . The only unknown vector in Equations 15 and 16 is the logical-

coordinate vector at State 2, , which is the desired solution embedded within . In

general, the vectors  and  are non-zero finite differences.

The most important feature of Equations 15 and 16 is that the discrete-expansions are

defined between two fixed particle positions. State 2 is absolutely fixed, invariant throughout the

localization problem, by the particle’s physical-coordinates, . Logical-coordinate evaluation

completes the definition of State 2 by providing the vectors  and . In contrast, State 1 is

arbitrarily fixed; its position within the computational domain is constrained only by the

requirement that . Therefore, a bound  vector may be selected for use within

Equation 16 that guarantees a non-singular Jacobian matrix and, thus, an algorithmically robust

evaluation method. Similarly, logical-coordinate evaluation using the linear discrete-expansion is

robust; the Jacobian matrix in Equation 15 is not a function of logical-coordinates.

Solution of Equations 15 and 16 for logical-coordinate evaluation is also computationally

efficient; all of their interpolation derivatives are constant and only require a single evaluation.

Inversion of the Jacobian matrices is only required once. While, the interpolation derivatives

within Equations 15 and 16 are not functions of the solution vector, elements of  appear on the

right-hand-side of the bilinear discrete-expansion. An iterative solution strategy, one that lags the

second-order derivative term, can be applied to Equation 16 to obtain . The constant Jacobian

matrix can be reused throughout the iterative solution of Equation 16. In contrast, only a single

solution of Equation 15 is required for logical-coordinate evaluation using linear interpolation.

X∂
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Summary

The objective of this research was to develop discrete-expansions for common multi-

linear interpolation functions. Five discrete-expansions were developed for linear interpolation

defined in triangular cells, and eight discrete-expansions were developed for bilinear interpolation

defined in quadrilateral cells. These expansions were developed by parametrically integrating the

interpolation function’s total-differential between two particles located within separate, non-

contiguous grid cells. Discrete-expansions are similar to multi-variable expansions, but unlike

Taylor’s series, they are valid throughout a discretized domain. For particle methods, discrete-

expansions are valid for numerical analyses since they account for interpolation discontinuities

across cell boundaries. The use of discrete-expansions for logical-coordinate evaluation also

provides an algorithmically robust and computationally efficient particle localization method.
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Figure 3: Limits of Integration
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