
Mapping the Genome/Clawicul Linku,~c Muppin<y

Classical Linkage Mapping

Classical linkage analysis is used to determine the arrangement of genes on the
chromosomes of an organism. By tmcing how often different forms of two variable
traits are co-inherited, we can infer whether the genes for the traits are on the same
chromosome (such genes are said to be linked), and if so, we can calculate the genetic
distance separating the Ioci of the linked genes. The order of and pairwise distances
between the loci of three or more linked genes are displayed as a genetic-linkage map.

For simplicity, we will consider traits of the type that Mendel studied, namely, traits
exhibiting two forms, or phenotypes, one dominant and one recessive. Each such
Mendelian trait is determined by a single pair of genes, either AA, Ao, or aa, where A

is the dominant allele (form) of the gene and a is the recessive allele. Many inherited
human diseases fall into this category. The two phenotypes are the presence or
absence of the disease, and they are determined by a single gene pair, either DD,

DN, or NN, where D is the defective allele that causes disease and N is the normal
allele. If D is dominant, as in Huntington’s disease and retinoblastoma, a person who
inherits only one copy of D, and therefore has the genotype DN, can manifest the
disease. Alternatively, if D is recessive, as in neurofibromatosis, cystic fibrosis, and
most other inheritable human diseases, a person must inherit a copy of D from each
parent (genotype DD) to manifest the disease phenotype. The two members of a gene
pair are located at corresponding positions on a pair of homologous chromosomes.
The chromosomal position of the gene pair for trait “A” will be called locus A. In
the figures the dominant phenotype will be referred to as dom “A” and the recessive
phenotype as rec “a.”

First let’s consider the inheritance of two unlinked traits, “A” and “B.” Here, unlinked
means that the gene pairs for the two traits are on different chromosome pairs. Since
the chromosomes on which the genes reside are inherited independently, the genes
are also inherited independently. In other words each offspring of a parent with the
genotype AaBb has an equal chance of inheriting AB, Ab, uB, or ah from that paretlt,
The latter statement is the law of independent assortment discovered by Mendel. (See
the discussion of Mendelian genetics in “Understanding Inheritance.”)

Now let’s suppose instead that traits “A” and “B” are linked and that a parent carries
the dominant alleles A and B on one chromosome of a homologous pair nnd the
alleles a and b on the other chromosome. The offspring usually co-inherit either A

with B or a with b, and, in this case, the law of independent assortment is not valid.
Thus to test for linkage between the genes for two traits, we examine certain types of
matings and observe whether or not the pattern of the combinations of traits exhibited
by the offspring follows the law of independent assortment. If not, the gene pairs for
those traits must be linked, that is they must be on the same chromosome pair.

Question: What types of matings can reveal that the genes for two traits are linked?

Answer: Only matings involving an individual who is heterozygous for both traits
(genotype AaBb) reveal deviations from independent assortment and thus reveal
linkage. Moreover, the most obvious deviations occur in the test cross, a mating
between a double heterozygote and a doubly recessive homozygote (genotype aabb).

Recall that individuals with the genotype AaBb manifest both dominant phenotypes;
those with the genotype aahb manifest both recessive phenotypes.
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A Simphjied Example: Consider a test cross
between a double heterozygote (AuBb) and a
double recessive homozygote (aabb). Without

additional information, all we know is that the
genes of the heterozygous parent could be ar-
l-anged in any one of the three configurations
shown in cases 1, 2a, or 2b. Recall, how-
ever, that a parent transmits only one member
of each chromosome pair to each of its off-
spring, so each of the possible arrangements
would yield a different result. In case 1, where
the gene pairs for traits “A” and “B” are on
different chromosome pairs, the offspring can
exhibit all four possible two-trait phenotypes,
each with a probability of 1/4, in agreement
with the law of independent assortment. In
cases 2a and 2b, where the gene pairs are
linked (and we ignore the effects of crossing

over, a phenomenon described below), the off-
spring exhibit only two of the four compos-
ite phenotypes, each with a probability of 1/2.
Thus if the genes for traits “A” and “B” are
linked, it would appear that the results of the

test cross would depart significantly from pre-
dictions based on independent assortment,

The reader should note the difference in the
arrangement of alleles in cases 2a and 2b and
how each arrangement, or linkage phase, in
the heterozygous parent leads to different two-
trait phenotypes among the offspring. In case
2a, A and B are on one chromosome and a

and b are on the other (a genotype denoted
by ABlab, where the slash separates the alleles
on different chromosomes). Consequently, the
offspring from this test cross exhibit either
both dominant or both recessive phenotypes,
each with a probability of 1/2. In case 2b,
A and b are on one chromosome and a and
B are on diflercnt members of the homolo-
gous pair (genotype AbluB), and so the off-
spring exhibit the other two composite phe-
notypes, each a combination of a dominant
and a recessive trait and, again, each with a
probability of 1/2. In this simplified example,

Test Cross for Two Traits (without Crossing Over)

Case 1: Independent Assortment

Double recessive
Double heterozygote homozygote

Parental
chromosomes

JaB/L J.JL

Parental
genotypes AaBb x aabb

+
Probability of

offspring genotypes ~AaBb + ~Aabb + ~ aaBb + ~ aabb

Phenotypes of Dom “A” Dom ‘“A” Rec “a” Rec “a”
offspring Dom “B Rec “b” Dom “B” Rec “b

Case 2a: Linkage (with Linkage Phase 1)

Double Double recessive
heteroz ygote homozygote

Parental
chromosomes

A

B 11 H!; : :
Parental

genotypes AB/ab x ab/ab

J
Probability of

offspring genotypes ~AB/ab + ~ab/ab

Phenotypes of Dom ‘“A Rec “a”
offspring Dom “B” Rec “b”

Case 2b: Linkage (with Linkage Phase 11)

Double Double recessive
heterozygote homozygote

Parental
chromosomes

Ill !!!

Aa a a

bB b,
Parental

genotypes Ab/aB x ab/ab

Probability of 4

offspring genotypes ~Ab/ab - + ~aB/ab

Phenotypes of Dom “A” Rec “a”
offspring Rec “b Dom “B’%

it appears quite easy to distinguish
linkage from independent assortment, provided the test cross results in a large nu-mber
of progeny. However, in simplifying the example we have made a significant
omission.
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Question: Are two alleles on the same chromosome always inherited together?

Answer: No, During meiosis (the formation of eggs or sperms), two homologous
chromosomes may exchange corresponding segments of DNA in a process called
crossing over. Crossing over leads to formation of gametes that possess chromosomes
containing new combinations of alleles, or recombinant chromosomes. Crossing over
is not a rare phenomenon. In Fact, each human chromosome pair within a germ-1 ine
cell undergoes, on average, about 1.5 crossovers during meiosis.

Crossing Over during Meiosis

Nonrecomblnant Recombinant
chromosomes chromosomes

(~ ,—’—>

Homologous Crossover between Possible single chromosomes
chromosome locus A and locus B after in resulting eggs or sperms

pair in germ-line chromosomes have replicated
cell

88

Example: Consider again a doubly heterozy -
gous parent with the genotype AB/ab. That
is, A and B are on one member of the bomo-

ogous chromosome pair and a and h are on
the other. During meiosis each chromosome
is replicated and the resulting four chromo-
somes are parceled out so that only one en-
ters each gamete. If crossing over does not
occur between locus A and locus B (as as-
sumed in case 2a above), each egg or sperm
produced by the parent receives a chromo-
some containing either .A and B or a and
b. Those chromosomes are said to be non-
recombinant for traits “A” and “B.” On the

other hand, if crossing over happens to oc-
cur between locus A and locus B, as shown
in the figure at left, then some gametes will

receive a chromosome containing a new combination of alleles, either A and b or a

find B. Those chromosomes (shaded red) are said to be recombinant for traits “A”
and “B.” (Note that only individuals who are doubly heterozygous for two traits can
produce gametes containing chromosomes that are recombinant for those traits.) The
appearance of a recombinant, an offspring containing a recombinant chromosome, is
called a recombination event,

Question: How do recombination events complicate the determination of linkage
bet ween the genes for two traits?

Answer: When we include the possibility of recombinant offspring in cases ?a and
lb (above), the distinction between case 1 (independent assortment) and cases ~~~and

2b (linkage) becomes less obvious.

A More Realistic Example: The figure on the page opposite shows the test crosses
for cases 2a and 2b, this time including the possibility of recombinant among the
offspring. The doubly heterozygous parent may produce recombinant chromosomes
(shown in red), which can then be inherited to produce recombinant offspring. In
each case the recombinant have the composite phenotypes that were absent when
the possibility of crossing over was not included (see cases 2a and 2b above). In
other words, both cases 2a and 2b can produce all four composite phenotypes,
just as does case 1 (independent assortment). However, whereas in case I 1he
probabilities of producing the phenotypes were equal, in case 2 the probability of
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producing recombimrnts is usually less

than the probability of producing non-
recombinants. Thus linkage will be ap-
parent from the results of a test cross
provided three criteria are met: (1) the
loci of the linked genes must be rel:i-
tively close together; (2) a large number
of progeny must be available to obtain
good statistics (therefore we may have to
examine J large number of matings); and
(3) the test cross must involve only one

possible linkage phase; that is, we must
be able to infer which linkage phase is
present in the heterozygous parent if in-
deed the genes are linked.

If’these criteria are met, then we know
which offspring are recombinant. Fur-

ther, by comparing the number of recom-
binant offspring with the total number of
offspring. we can arrive at an estimate of
the probability of producing a recombi-
nant. That probability is called the re-
combi}?afion ,jiactio17 and, as we will see
below, is related to the distance separat-
ing the loci of the linked genes.

We will also see that as the loci of
two linked gene pairs get farther and
farther apart, the recombination fraction
for the two gene pairs approaches 0.5,
so that the two recombinant phenotypes
are produced with the same probability
as the two nonrecombinant phenotypes.
in other words, when the recombination
fraction is 0.5, all four composite phe-
notypes are produced with equal prob-
ability, just as they are in case 1, and
we infer that the gene pairs are unlinked
even though they are on the same chro-
mosome pair.

When we try to determine linkage
among human traits, the problems we en-
counter are that human matings are not
controlled (and therefore test-cross mat-
ings are rare), the data needed to infer the

Test Cross for Two Traits (with Crossing Over)

Case 2a: Linkage Phase I

Double heterozygote

Parental
chromosome

pairs A
II

a
B b

Possible types
of gametes

Possible types of
chromosome

pairs in offspting

I

Double recessive homozygote

; II :

I
Meiosis Meiosis

$ J

Phenotypes of Dom “A Rec “a” Dom “A” Rec “a”
offspring Dom ‘“B” Rec “b’ Rec “b” Dom “0”

~~
Nonrecombinants (more probable) Recombfnants (less probable)

Case 2b: Linkage Phase II

Double heterozygote

Parental
chromosome

pairs A
11

a
b B

Double recessive homozygote

a
1,1

a
bb

I I
Meiosis Meiosis

J J

Possible types
of gametes

Possible types of
chromosome

pairs in offspring A
B 1

Phenotypes of Dom “A Rec “a” Dom “A” Dom “B”
Rec “b” Rec “a”

“ffspr’ng ~ ~
Recombinant (less probable) Nonrecombinants (more probable)

possible linkage phase in the heterozygous parent may not be available. and the
number of offspring produced by two parents is typically much smalier than that
produced by a pair of experimental organisms.
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Question: How do we estimate, from the offspring of a single family, the likelihood
that two gene pairs are linked?

Answer: For simplicity, we consider a three-generation family for which we have
enough information to infer the linkage phase in the heterozygous parent, if indeed

the gene pairs for the two traits under study are linked. We can then identify which
offspring are recombinant for the two traits, again under the hypothesis of linkage,
and divide the number of recombinant offspring by the total number of offspring to

obtain an estimate of the recombination fraction. Finally, we evaluate the likelihood
of obtaining the data we have under two opposing hypotheses: that the gene pairs
are linked, and that the gene pairs are unlinked. The ratio of the two likelihoods is
a measure of how reliably the data distinguish linkage from independent assortment.

Test Cross for Linkage in a Three-Generation Family

Grand parental o Female

phenotypes Dom “A
Dom “B”

El
Male

A a Double

Parental heterozygote Aa~~
genotypes B b

Only possible
linkage phase

Offspring
Dom “W

Dom .,A

(i-b

Dom “A Rec “a” ~ec <a,<

phenotypes Dom “B”
Dom ,>B Dom “B” Rec “b Rec “b’

( J

Seven nonrecombinants One
recombinant

Likelihood ratio = L(data I E)) = 01(1 - 6)7

L(data I ~ ) (+)s

“Most likely” recombination fraction = f3maX = ~

L(data I f3maX) = ,,08
Lod score = Ioglo

L(data I ~ )

Data from this family indicate that the odds are about 10108, or 12,6 to 1 in favor
of linkage between traits “A” and “B”.

Example: Consider a test cross between
a male double heterozygote (AuBb) and
a female double recessive homozygotc
(aabb). The doubly heterozygous ti~ther
inherited both dominant alleles from his
father, and therefore, if the gene pairs
for traits “A” and “B” are linked, the f&
ther must carry alleles A and B on the
same chromosome. Thus, under the hy
pothesis of linkage, we know- the link-
age phase in the father, and therefore,
we know that an offspring exhibiting
one dominant and one recessive trait is
a recombinant. Among the offspring
shown here, one is a possible recombi-
nant and seven are possible nonrecombi -
nants. Thus the genes for traits “A” and
“B” appear to be linked, with a recom-
bination fraction of 1/8,

We need a method to evaluate the
statistical significance of our results.
The conventional approach is to apply
maximum-likelihood analysis, which es-
timates the “most likely” value of the
recombination fraction 6 as well as tht:
odds in favor of linkage versus non-
linkage. We begin with the condi-

tional probability L(data 10), which is
the likelihood of obtaining the data if
the genes are linked and have a recom-
bination fraction of 0. In particular, the
1ikelihood of obtaining one recombinant

and seven nonrecombinants when the recombination fraction is O is proportional to
01(1–0)7, since O is, by definition, the probability of obtaining a recombinant and
(I – 0) is the probability of obtaining a nonrecombinant.
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We then determine On,ax, [he value of () at which L has its maximum value, or
equivalently, at which dL/dO = O. In this simple case, where we have only one
linkage phase to consider, O,naxis identically equal to I/8, the value we obtained by

direct inspection of the data. (If both linkage phases are possible, both must be taken
into account in the likelihood function.)

Next we compute the ratio of likelihoods L(data 10 = @~,,X)/L(data 10 = 1~2),
where L(data 10 = 1/2) is the likelihood of obtaining the data when O = 1/2, or
equivalently, when the gene pairs are unlinked. This ratio gives the odds in favor
of linkage with a recombination fraction of O,n,,Xversus nonlinkage, For this family
we find that the odds are about 12.6 to 1 in favor of linkage with a recombination
fraction of 1/8 versus independent assortment, or nonlinkage.

Geneticists usually report the results of linkage analysis in terms of a lod score,
which is the logarithm (to the base 10) of L(data I (7= Om,x)/L(data I d = 1/2). For
this family the Iod score is about 1.1. A Iod score of 3, which corresponds roughly
to 1000 -to-1 odds that two gene pairs are linked, is considered definitive evidence
for linkage. The analysis of many families with large numbers of siblings is usually
required to achieve lod scores of 3 or more.

Question: Why is the recombination fraction for linked gene pairs related to the
distance separating the gene pairs?

Answer: If we assume that crossing over occurs with equal probability along the
lengths of’ the participating chromosomes (an assumption first made by Thomas
Hunt Morgan around 19 10), then the distance between the loci of two gene pairs
determines the probability that recombinant chromosomes will be formed during
meiosis, which, by definition, is the recombination fraction. In particular, if two
loci are far apart, a greater number of crossovers between the two will occur and
recombinant chromosomes will be formed during a greater number of meioses than
if the loci are close together. In other words, the value of the recombination fraction
increases with the distance between the gene pairs, and thus it provides a measure of

the physical distance separating the two pairs. Additionally, pairwise comparison

of recombination fractions for several gene pairs on the same chromosome pair
establishes the order of the loci along the chromosome pair.

Question: Once we have determined the recombination fractions for many pairs of
genes, how do we construct linkage maps of the chromosomes?

Answer: First, we use the recombination fractions to separate the gene pairs into
linkage groups. A linkage group is a set of gene pairs each of which has been linked
to at least one other member in the set and all of which, therefore, must be on the
same chromosome pair. Then, because the recombination fraction increases with the
distance separating the loci of two gene pairs, we can use them to order the loci of
the gene pairs. The ordering is carried out much as one would order a set of points
on a line, given the lengths of the line segments joining the various pairs of points.
Next each recombination fraction is converted to a genetic distance, a quantity defined
below. Finally, the loci are plotted on a line in a manner such that the plotted distance
between any two loci is proportional to the genetic distance between the two loci,
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linkage data

lrder of loci
Determined
rom
ecombination
raclions

.inkage map

Construction of a Linkage Map

... . .
Intervalbetween Recombination Genetic distance

gene loci fraction (centimorgans)

AB 0.25 35

AC 0.16 20

AD 0.36 65

AE 0.44 110

BC 0.13 15

BD 0.22 30

BE 0.39 75

CD 0.30 45

CE 0.42 90

DE 0.30 45

ACB D E

+ J+~~ ~
0.16 0.13 0,22 0.30

A

~
20 15 30 45

L. — - ~
110 centimorgans

Example: The table shows the recombination fractions for a
linkage group of five gene pairs, A(I, RI?, C(”,Ill, and Ec. The
loci oi’ these gene pairs are A, B, C, D, and F., respectively,
and AB, for example, denotes the interval between locus A :~nd
10CUSB, The recombination fractions corresponding to the in-
tervals AB, FK, and AC are 0.25, 0.13, and 0.16, respectively,
Consequently, locus C is inferred to lie between locus A :m(i
locus B, as shown in tile iinkage m~p. All five ioci can be
ordered by [his type of inference, as shown in the figure.

The next step is to convert the recombination fractions into
genetic distances, The genetic distance between locus A ami
locus B is defined as the average number of crossovers occur-
ring in [he interval AB. When the interval is so small that the
probability of multipie crossovers in the interval is negligible,
the recombination fraction is about equal to the average num-
ber of crossovers, or to the genetic distance. However, as two
loci get farther apart, the probability of mul~iple crossovers in
the interval between them increases. Further, an even number
of crossovers between two loci returns the alleles at those loci
to their original positions and therefore does not result in the
production of recombinant chromosomes, Consequently, the
recombination fraction uncierestimates the average number of
crossovers in the intervai, or the genetic distance between The
two loci, We therefore use what is called a mapping function
to translate recombination fractions into genetic distances.

In i919 the British geneticist J, B. S. Haldane proposed such
a mau~in~ function (see below). The table lists the genetic. ..-

distance, according to Haidane’s function, that corresponds to each recornbinat ion
frxtion, and those distances are displayed as a linkage map,

Question: What is Haldane ’s mapping fltnction ?

Answer: Haldane defined the genetic distance, x, between two ioci as [be aver-
age number of crossovers per meiosis in the interval between the two loci. He then
assumed that crossovers occurred at rmdorn along the chromosome and that the prob-
ability of a crossover at one position along the chromosome was independent of [he
probability of a crossover at another position. (It follows from those assumptions timt
the distribution of crossovers is a Poisson distribution.) Using those assumptions, he
derived the following relationship between 0, the recombination fraction and .1-,the ge-
netic distance (in morgans): O = ~ (1 – c-z’), or, equivalently, T = –~]n( 1 – 20).
Note that w the genetic distance between two loci increases, the recombination frac-

tion approaches a limiting value of 0.5. Also, when the recombination fraction is

smail, .~ and 0 are approximately equal. In practice geneticists treat them as equal for
recombination fractions of 0. i or less, As indicated, the unit of genetic distance is the
mor,gan, or. more often used, the centimorgan, a distance between two loci such that

on average 0.0 i crossovers occur in that interval. Cytological observations of meiosis
indicate that the average nutmber of crossovers undergone by the chromosome pairs
of a germ-line cell during meiosis is 33. Therefore, the average genetic length of a
human chromosome is about 1.4 morgans, or about 140 ccntimorgans.
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Question: How can we estimate the physical distance
between the two gene loci from the genetic distance
between them?

Answer: Since the average genetic length of a human
chromosome is about 140 centimorgans and the average
physical length of the DNA molecule in a human chromo-
some is about 130 million base pairs, 1 centimorgan cor-
responds [o approximately 1 million base pairs of DNA.
However, this correspondence is very rough because it is

based on the assumption that the probability of crossing
over is constant along the lengths of the chromosomes. In
real ity, however, the probability of crossing over varies
dramatically from point to point, and a genetic distance
of 1 centimorgan rmay correspond to a physical distance
as large as 10,000,000 base pairs or as small as 100,000
base pairs. Also, because the probability of crossing over
is higher in female humans than in male humans, genetic
distances are greater in females than in Imales.

Example: Shown here are two genetic-linkage maps for
chromosome 16, one derived from data for males and the
other from data for females. The female linkage map is
70 centimorgans longer than the male linkage map. But
we know from other data that the physical length of the
DNA molecule in either a male or female chromosome
16 is the same (about 100 million base pairs). Note
that the loci listed on the linkage map arc those not of
genes but rather of DNA markers (see “Modem Linkage
Mapping”).

CAVEAT: Classical linkage analysis can be applied only
to genes for variable traits, and, most efficiently, to genes
for single-gene variable traits such as many inherited
human diseases. It can tell us whether the gene pairs for

two or more variable tmits are on the same homologous
chromosome pair, but done it cannot tell us on which
chromosome pair the gene pairs reside. Furthermore,
it can tell us the order of the gene pairs in a linkage
group, but alone it cannot tell us where any one of the
gene pairs is physically located. Finally, classical linkage
analysis provides a genetic distance between two linked
gene pairs, but that distance is not always proportional to
the length of the DNA segment separating the gene pairs.
Thus, classical linkage analysis alone does no[ help us
to isolate the particular segment of DNA that contains
a particular gene. However, when linkage analysis is
applied [o inherited variations in DNA itself, it does serve
that function (see “Modern Linkage Mapping”). ■
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Chromosome 16
Genetic-Linkage Maps

Female Male

Di6S85—

D16S85 13.3
D16S60

245 D76S51

132

131:

D16s60-- D16S292
131:

106 D16S287
131’

D16S51 – 123

122
12,1

121

D16S292–

74

D16S287–
112

14.7

D16S39–
11 1

D16S85–
‘Z 7 Centromere

11.1
D16S164– ‘4

112

479
D16S39 121

122

D16S65 130
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232
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Distance between
markers in
centimorgans (cm)

Data courtesy of
D. F. Callen and
G. R. Sutherland

(202 cm)
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